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TW0-DIMENSIONAL, SUPERSONIC, LINEARIZED FLOW WITH

HEAT ADDITION

By Harvard Lomax

SUMMARY

Calculations are presented for the forces on a thin supersonic wing

underneath which the air is heated. The analysis is limited principally
to linearized theory but nonlinear effects are considered. It is shown

that significant advantages to external heating would exist if the heat

were added well below and ahead of the win_.

INTRODUCTION

Efficient propulsion by a ram-jet engine which brings the air to a

low subsonic speed for ignition and burning is, at present, limited to

the Mach numbers below which the stagnation temperatures do not present

prohibitive cooling problems. One method of propulsion that diminishes

the cooling problem and still makes use of the surrounding air is to add

heat directly to the external supersonic flow. The object of this paper

is to study the latter effect and to find heat distributions which are

in some sense optimum. Specifically, calculations are presented for the

forces on a thin supersonic wing underneath which the air is heated. The

analysis is based on linear theory so the flow disturbances must be small.

However, the importance of certain nonlinear effects are discussed.

Other authors (see refs. i, 2, and 3) have analyzed exterior heating

by means of linear theory. The conclusion reached in these papers, as

well as in reference 4, is that no substantial gain in airplane range

performance can be expected from small amounts of heating in a thin (on

the order of the wing thickness) layer beneath the wing at supersonic

(M_ = 3 to 5) speeds. The analysis presented herein is in basic agreement

with such a conclusion but it shows that this kind of heating; while per-

haps the most practical at present, is far from optimum. It is true that

the optimum heating in a supersonic stream may be attainable only by some

novel form of energy release such as electromagnetic radiation, but the

attractiveness of external heat addition appears to be limited only by
the extent to which it can be controlled.



a

c

CD

CL

Cp

Cx

D

G,Go,GI

hf

K

L

M

P

P

Pc

q

%

r

R

t

SYMBOLS

speed of sound

wing chord

specific heat at constant pressure

specific heat at constant volume

D

drag coefficient, q---g

L

lift coefficient, q---_

P-P_
pressure coefficient,

net force coefficient in free-stream direction

drag

integrals of heating function (see eqs. (52) and (56))

maximum depth of heated region

see equation (76)

lift

Mach number

local pressure

power

P

power coefficient, q_U_c

i
dynamic pressure, _ pU2

heat added per unit volume per _nit time

dimensionless heat term (see eq. (27))

length of heated region measurec from trailing edge

gas constant

wing thickness
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h

P

T

O0

i,f

a,Q

u,Z

c_t

stagnation temperature

thrust from added power

total velocity in the x direction

perturbation velocities in x,y,z directions

dimensionless wing volume,

total velocity (vector)

Cartesian coordinates

volume (unit span)
c 2

distance from z = 0 plane to wing surface

wing angle of attack

ratio of specific heats

-- --engine

wing slope

heat added per unit air mass

local density

wing thickness ratio

perturbation velocity potential

Subscripts

free-stream conditions

conditions at initial and final heating stage

velocities caused by aerodynamic and heat effects

conditions on upper and lower surface of wing

slopes attributed to wing camber and twist

3



4

BASIC ASSUMPTIONS AND EQUATIONS

Equations for Small Perturbation Flow

Neglecting viscosity and heat conduction_ and assuming a perfect

gas, we can write the equations of state and continuity of mass, momentum,

and energy in the form

p = oRT (la)

(_ • grad)o + p div V = 0 (lb)

O(V • grad)_ + grad p : 0 (ic)

(7 grad) <_pT + 2_-) = Q-_vp (id)

where Qv is the heat added per unit volume per unit time. If the flow
is limited to one having only small disturbances, these can be combined

to form (see refs. 5 and 6)

(_-1)_2 (2)
(M_2-1)_xx-_yy-mzz : -Qv 2q_

where _ is the perturbation velocity potential and

stream dynamic pressure. The term Qv is related to

per unit mass of air, by the equation

q_ is the free-
_, the heat added

(_ grad)z Q_= U< (3a)

which, for small disturbances, yields

1 _x z)Qv(x_'y'z)_xl (3b)(y,

where x = g(y_z) is the equation of the forward surface of the heated

region. Similarly; the equations for pressure and density reduce to

p-p_ _ 2u (4)
% U_

%0 _2 _ + (7-]-) (9)
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The basic assumptions are that the effects of viscosity and heat

conduction are negligible and that the air is a perfect gas. The mechanics

of the heating itself are ignored and assumed to be independent of the gas

behavior. By far the most restrictive assumptions are those which limit

the flow to small disturbances. Since we are interested here only in high

supersonic flows, these can be expressed as

_T << 1 (6)

(7-1)_ << 1 (7)
a_ 2

where m is a representative slope of an exposed surface. The first of

these conditions is the usual one that limits the application of linear

theory when applied to high Mach number flows and the second one represents

the limitation on the heat intensity in such flows.

Discussion of Validity of Linearized Equations

The conditions (6) and (7) which have been imposed on flow fields to

which equations (2) through (5) apply, have a clear interpretation; namely,

that the wing slopes be small compared to I/M_ and the heat addition be
limited to

-_ dx I << i (8)

Quite possibly other special types of heating not restricted by (8)

are governed by the linearized equations. Consider, for example, a one-
dimensional flow in which there is no area change. In this case the exact

equation (neglecting viscosity and heat conduction) can be written

--(_-l)U (9)

which has the solution

7-i _m + []2 _ u__(a_2+ 7uoo2)+ T u2uoo

if _ = 0 at U = U_. In terms of the perturbation velocity u, the

pressure and heat input can be expressed as

P'P_ 2u
% U_

(io)

(ii)
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and

7 -1 1 u 1 7+1
_b_i .....2 uoo

From the linearized equations, on the other hand, one finds

(12)

(_-l)Q_v_2 (1B)
(iV_o2-1)gxx= _ 2ci__

P-P_ : 2u (14)
u_ u_

and

x

(_5)

Clearly, in the case of one-dimensional flow, linearized theory

predicts the heating effect on the pressure to a higher order than that

given by expressions (6) and (7). In the ole-dimensional case the linear

theory is valid for supersonic Mach numbers if u/U_ << i and not

M_u/U_<< i. We will return to this point presently.

An obvious way to check a proposed approximate theory is to apply it

to examples which have been studied by more exact methods. One such set

of examples is supplied in reference 4 wherein the effect of adding heat

under a two-dimensional, 5-percent-thick, biconvex wing at 0° and 2° angles

of attack is calculated by a nonlinear theory. The heat was added so that

the stagnation temperature rose linearly from its free stream to a speci-

fied final value. Figure i gives a comparison of these results with those

found by the linear theory I used in this report.

The two theories are in good agreement especially as to the effect

of heat addition on the pressure. This agreement is surprising in the

case of figure l(a). One can show that

(_-I)B_ <_+ l)<___l ::-xi i>
a2 _f-xi

(16)

and for x = xf, M_ = 5, and Tf/T i = 1.243 this becomes 1.458 which

certainly violates condition (7). Yet in figure l(a) the linear theory

follows the more exact one even to the tra_ling edge.

iThe analytical form of the linearize6 results and a brief discussion

of their theoretical development are given in the next section.
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Perhaps one explanation for thls degree of accuracy can be drawn

from the discussion of one-dimensional flow. It is well known that, to

a first order, the stream-tube area intercepted by a Mach line does not

change in the region bounded by the fore and aft shocks in a two-

dimensional flow, as shown in sketch (a). The linearized treatment of
the heated flow contains the result

that under the condition of constant

heat addition, as is the case for both

examples in figure l, the stream tubes

are unaffected by the heating in

region A of sketch (a), and begin to

diverge at a rate proportional to the

distance from the wing in regions B

and C. The heat added in region C,

however, has no influence on the wing

pressure distribution and the value of

(y-1)_/a_ 2 at p, the last point on the

outer portion of the heated region Z

that can affect the wing pressures, is T

about 0.66. Thus, over most of the Ipart of the heated region that contri-

butes to the wing pressure field

either the flow is nearly one-

dimensional or the magnitude of

(_-l)_/a_2 is small.

Stream lines in isentropic
two- dimensional flow

Region of heot addition

lh h neorized the_

P

X

From another point of view, the Sketch (a)

high degree of accuracy for the line-

arized results shown in figure l(a) must be considered fortuitous. Mager

in reference i, for example, uses the identical linearized theory and cal-

culates pressures about 40 percent higher than those shown here. The

reason can be explained with the aid of sketch (b). The upper part of

the sketch shows the exact boundaries of the ho

wing and heated region. The original height L I hi
h o of the stream tube which enters the heated

region with height h i is, in this case, about _-- --.-_.____
40 percent greater than h i . Mager cast his

equation for pressure in terms of the power

coefficient given in reference 4 which, in turn,

is correctly based on ho. Hence his calcula-

tions show the correct value for the power but

high values of pressure. In this report the

equations were derived in terms of the boundary

conditions in the lower part of sketch (b) and

predict the correct value for the pressure but

a power 40 percent low.

The point of all this discussion is that

figure l(a) suggests an accuracy for the line-

arized theory of heat addition at Mach numbers

and heat intensities which undoubtedly exists

Exoct

lh i

-I
L ineor

Sketch (b)
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only for special cases. In the following sections some quite general

results concerning the forces developed on two-dimensional wings in heated

flows are derived. In general their validity depends on the extent to

which expressions (6) and (7) are true.

Solutions to the Linear Equations in Two

and Three Dimensions

Obviously equation (2) is either elliptic or hyperbolic depending on

whether Moo is less or greater than i. By the application of Green's

theorem, solutions can be written for either the subsonic or supersonic
case. We will consider here only supersonic flow for which the potential

can be expressed in the form

_(x,y,z) = :L _ dS + --_--
2_ _x

S V

(_-z)%_% dV
2%o

(17)

where

_--'v"= _yy v2 "" _'z v3

and the direction cosines vz3 v2, ws of the conormal

to those of the inwardly directed normal by

-nl_3 2 = Av 1 :, n 2 = Av 2 , r_ = Av 3

A is fixed by the condition

V12+V22+V32 = ,_

and o is given by the equation

(z8)

v are related

(19a)

(Z9b)

= arc cosh
X-E 1

13J(y-yl) -_+(z-z_)2
(20)

The symbol V represents the volume enclo;ed by the surface S over

which 9 and _p/_v are integrated. Applizations of equation (17) to

supersonic wing theory when Qv is zero ace well known.

In two dimensions the solution simplifies to

A Idsl + dS= 0
s S

(2l)



where S is now the area enclosed within the curve s. Notice that

when the integration is along a streamline A = i, and when along a

characteristic A = _.

In both two and three dimensions the effect of heat addition on

small disturbance flow fields is identical to that of distributing simple

fluid sources of strength (7-1)M_2Qv/2q_ throughout the flow. (This

effect was pointed out in both refs. 5 and 6.)

APPLICATIONS

Heating Under a Biconvex Wing

Consider the wing shown in

sketch (c). Its upper surface is flat

and its lower surface is given by the

equation

z = - 4t x(c-x) - _x
C 2

U_

(22)

where _ is the angle of attack. If

there is no heating, the linearized-

theory value of the pressure coeffi-

cient on the lower surface is

Z

xi_[$" ] __ v']_:_'i_:_']-/-..... xf_

Sketch (c)

X

or

= % =_" - +T

P
--=l+--
Poo

(23)

(24)

If heat is added in the region shown in the sketch in such a way

that h_ the stagnation enthalpy, increases linearly with x then

X

= flu = _p xf-xi
(25)

where Ti and Tf are stagnation temperatures at x i and xf, respectively.
From equation (25) one finds

- Uoo (26)
2%o

that is to say, Qv is a constant over the entire heated region.
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As an example of the way in which

equation (21) can be used, consider the prob-

lem of finding the pressure at the point p

indicated in sketch (d). Introducing the

g! dimensionless h_at parameter _ where

= (7-1)_2hfQv (27)
2qU_

Sketch (d) we have

a a _eif°- as + F _(-z_) P_ U_ //_v_idzl = 0a_ + _h--7
paoep

_pa _ _ad _ _eP _ ._U_ //_vdXldzl = 0- ds + ds + ds + B--_

padep

since _ is a constant along oe. These equations give

.F x-_z U_i _qo dx i +
2_p - _a - _o _zl _hf

/QvdXidzi = 0

paoep

(28)

Uoo _2qOp - 2q)a + _ QvdXldzi = 0 (29)

padep

Eliminating q0a, we find

-_ - +
o 2-_ _pab fp abca ,/

(30)

The first term in equation (30) gives the effect of the wing on the

flow and the second term that of the heat. If Qv is a constant, as in

our example, the effect of the heat is prolortional to the sum of the two

areas pabfp and abca. The pertinence of these areas is at once obvious

if we think of solving the problem by usin_ an in_ge system of sources

having the wing as a plane of symmetry.

The pressure coefficient on the lower wing surface is given by

equation (4) and, using equation (26) for Qv, is
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This equation is valid for xi < x < xi + _hf, that is until the forward
Mach line from p intersects the lower front corner of the heated region.
For xi + _hf < x < xf, one can show

and similar results can be written for x > xf.

In figure i the above results from the linearized theory are compared
with those from the more exact theory given in reference 4. The close
agreement between the two theories has been discussed in a preceding
section.

We can estimate the significance of the result of external heating
by studying its effect on airplane range performance. From the form of
the Breguet range equation

_) _L_ _fuel heat energy_ weight fullRange = _per unit weight J Zn weight empty
(33)

let us consider the combined term

(34)

where

Th total thrust

D total drag

L total lift

P total power input

In the following, we make the assumption that maximum range is obtained

when (LU_/P)D=T h is a maximum and will, therefore, refer to this quantity

as the range efficiency factor.

As a simple example let the wing, again, as in sketch (c), be flat

on top and biconvex on the bottom. For simplicity, however_ Qv is now

taken to be a constant over the rear half of the lower surface in a region
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\ " r =t/C
v

Sketch (e)

X

bounded fore and aft by Mach lines as shown

in sketch (e). The pressure on the lower

surface of this wing is given by equation (32),

from which the sum of the forces in the free-

stream direction 2 on the upper and lower

surfaces is

32 T2 4 _2 i _v(2___)
Cx = COo+ _ + _ -

(35)

and CDo is the net airplane drag exclusive of the wing wave drag. The
lift is assumed to come entirely from the wing angle of attack and the

heating, so

L 4_ 1--

CL =%--_=_+_% (36)

Finally the power is given by

P =//%_ dz (37)

SO

P = Qv (38)

_u=c (__1)_2

Let us now evaluate the performance of the wing and external heating

in terms of the parameter (LU_/P)Cx=0 where Cx = 0 implies that the total

thrust and drag are equal. First it is clear that CL and P are independ-

ent of T, so T should be chosen to minimize Cx in equation (35). As a

result

3Qv
T =_ (39)

32

and

_ 3_ 2
_Cx = _CDo + 4_e + Qvc 32

(4o)

eln keeping with linearized theory the angle between the normal and

the vertical is neglected in evaluating the lift and drag.
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For a given power, that is, a given value of _, equation (40) can be

solved for _ under the condition that Cx = O. For optimum (LU_/P)Cx= 0
one finds

(41)

Qv _CDo

_P.Cx=O - 2 _ <l +J5- 16 iv2 /

(42)

(43)

The results for (LU_/P)Cx= 0
assumption that _--_2-1 = M_.

12

8

oolLI.I-}

#

are summarized in sketch (f) under the

The maximum value of (LU_/P)Cx=0. obtained

Extro thrust

required I

I I i i I

0 I _P 3 4 5
M.

P ,c,--o

Sketch (f)

by this particular method is seen, from equation (43), to be

[(7-I)M_2/2_](I_) or about 0.5 M_. This forms the left-hand boundary
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in the sketch and represents either an infinite heating rate or a zero

value of CDo. The right-hand boundary can rot be exceeded without

providing some extra thrust by an engine to satisfy the requirement

Cx = 0.

Arbitrary Heating in Two-Dimensional Fields

The preceding section contains an analysis of a specific wing section

heated in a specific way. There is no reason to suppose, however, that

the particular section and type of heating studied were optimum from the

point of view of, say, fixed volume and maximum (LU_/P)Cx= O. We will show,

in fact, they are not. In order to prove this, let us now derive the

simple expression for the lift and drag on arbitrary, planar, two-

dimensional wings in fields with arbitrary heat addition.

Evaluating planar wing velocity fields by heat images.- It has been

determined that a region of heat addition disturbs a linearized flow in

exactly the same manner as if the field were

filled with fluid sources of strength

(U_/hf)_v_ Thus if, as in the upper half of

sketch _g}, region A is a region of heat

addition, the va]ue of u and w at P would
be

B

÷/

Sketch (g)

1 £bf&
w =7 ja dZ

w
U : --:_

The 1/2 results J'rom the fact that the source

strength is prop(.rtional to 1/2 the stream

deflection in th_ upgoing or downgoing curves.

Now place a wing in the plane BB above

the heated regio_ A. The boundary condition,

insofar as the heat is concerned, is simply

that the value o_' w along BB is zero; the

distortion of th_ field caused by the wing's

own shape can be superimposed on this solu-

tion for the complete determination of the

disturbance fiel(.. It is clear then, that

the effect of th_ heat addition beneath a

wing is found by placing an image of A

above the wing, J_' in sketch (g), and dis-

carding the wing Obviously, the pressures

in waves i, 2, a1_d 3 in the sketch are the
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same as if a single region of heat addition were present, but the

pressure in region 4 is the same as that for the two heated areas.

Forces on wing obtained from surface pressure distributions.- Using

the concepts developed in the preceding section_ let us introduce the

following definitions:

Ua_ w a the velocities induced by the wing with no heating in the field

UQ, WQ the velocities induced beneath the wing by the heated region

and its image above the wing without the wing being present

Then assuming that the heat is

applied entirely within the fore s

waves from the leading and trailing

edges as in sketch (h), one can

write the expressions for lift,

power, and drag developed beneath

the wing in the form (on the wing

ua = -Wa/B

Zl
f f

x:,Sz _" _ _ ,,," X

/ff.1 5V /

,," ,,"" x - ,,gz + c
Sketch (h)

C

U_Lq_= -2 _o (UQ+Ua)dX (44)

C

._P = -2J3 _o UQdX (45)% (7-1)_ 2

C

U°°2Dcloo= 2# _o (Ua2+UaUQ)dX
(46)

These expressions will be used in a subsequent section to derive

optimum airfoil shapes for given heat fields.

Forces obtained from momentum flux.- Although equations (44) through

(46) are sufficient to analyze the performance of a two-dimensional wing

in the presence of heat_ it is instructive to re-examine the derivation

of the drag on the basis of the momentum crossing an enclosing surface.

This derivation is much more involved mathematically but it serves at

least the following two purposes: one, it illustrates the existence of a

new form of "momentum force" in heated flows appearing in addition to the

usual wave drag and being measured in the wake of the heated region; and

the other, it is capable of generalization to three dimensions.
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Consider the system illustrated in sketch (i). The control surface

is represented by the dashed lines. Linear lheory yields no disturbances

'b"

Sketch (i)

along the lines counterclockwise from b' to a and from a' to b.

momentum drag in the wave from a to a' is well known in its two-

dimensional linearized form to be simply

The

U_2Dwave
a !

= 2_a (Ua+_:)2ax
(47)

A comparison of equations (47) and (46) immeaiately shows that another

force having a similar order of magnitude must exist in the system. This

force is caused by the change in density (see eq. (5)) behind a heated

region.

One can show by retaining the lowest or(.ermagnitude terms contrib-

uting to the drag that the linearized value (,f the wake drag in three

dimension is given by

a_ _ u dx
dS

(48)

where the dS integration is made over an el,tire yz plane infinitely

far behind the wing. In a two-dimensional flow the induced velocities

behind the trailing-edge wave vanish so the J'irst two bracketed terms in

equation (48) vanish. The third term, howew_r, depends upon the disturb-

ance in the heated region itself. Hence, in two dimensions

b' _:

Dwake : p_(7-1) dz I u _ dx I

or
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Dwak______e= 2 FF
% hTj_ _ (_+Ua)_dz _ (49)

S

where S is the area of heat addition shown in sketch (i) (and does not'

include the heat image area).

The total drag is the sum of equations (47) and (49). This total

drag must be zero when the wing is a flat plate at zero angle of attack,

that is, when ua = O. Hence

a r

a 2F7 _2_ + hfU--__vUQ_dz_ --0
S

and

a !

_ : 2_a (Ua2+2UaUQ)dXz+2 _fffUa_vdXldZl

S

(50)

The value of ua beneath the

wing is constant along the

downgoing characteristics.

If, in the second term on the

right-hand side of equa-

tion (50), we change the coor-

dinate system so that one of

the coordinates is parallel to

a characteristic line and the

free stream is the direction

of the other, Qv can be inte-

grated along the characteris-

tics. Using equation (30),

one can show

\ \ P,o.oo,,

Sketch (j)

C !

2U_ F_Ua_vdXzd z = -2pf 2UaUQdX i-_fjj 1
S c

and the final expression for the drag is
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a Y _d !

J_D_ = 2_ Ua2_1_4_ _ ua_d-x 1 (51)

where the lengths cc' and dd' are defined in sketch (j).

Equation (51) gives the same value of drag as equation (46) since

along cc' is half its magnitude along the wing as illustrated in

sketch (j).

Optimum Wings in Heated Supersonic Fields

/ X

/ \ b,-'"

/
/

/

/

Sketch (k)

/

/ \ X
\

Consider the unit chord wing

and heat field shown in sketch (k).

The heat is added entirely within

the fore waves from the wing lead-

ing and trailing edges since heat

added outside this region will not

influence the wing and would not,

ther_fore, exist in an optimum com-

bina-;ion. Consider, also, only

case_ where heat is added beneath

the wing. Then equations (44)

through (46) can be expressed in

the form

CD = U_22_ _o [uz2(x) + Uu2(X)- _uZ(x)G(x) dx

1

2fo uu,x,o,x,]CL - U_

Pc =

1

2 o(x)a (7-1)Moo 2

where

ifa a(x) : (52)

and a and b are the extremities of the heated region along the charac-

teristic line passing through x on the airfoil. Introducing the fact

that ul/U_ = kl/_ and uu/U_ = -hu/_ wher_ h_ and _u are the lower and

upper airfoil slopes and introducing the n)tation
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(53)

Zc being the slope of the airfoil camber line and Zt being the upper

surface slope of the symmetrical thickness distribution, one can show

1

_Cx = _CD°+27 [2Zc2+2Zt2-(Zc-_t)G(x)]dx
o

(54a )

1

CL = _ _-
o

(5_b)

1

Pc - 2 _o G(x)dx (54c)(_-l)go2

The coefficient Cx is the net force in the stream direction and

is positive when a net drag results. The coefficient CDo is the net

drag to be overcome by the heat introduced under the wing exclusive of

the wing wave drag. In the absence of any other form of propulsion it

represents the friction drag, induced drag, and the wave drag of the

other airplane parts. Our object is again to seek a maximum value of

LU_/P when Cx = 0.

Since CL and P are not affected by ht, we can start by finding

the thickness that minimizes Cx. If we require a net volume _ (dimen-

sionless, equal to (volume/c 2 times unit span))and insist that the

airfoil close, this leads to the shape

ht(x) : _ - -_- - (55)

where

Then if

1

oo =f a(x)_
o

1

oi =7 xO(x)ax
o

hc is optimized by minimizing the quantity

(56a)

(%b)

I = Cx + AC L
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where A is a constant, there results

i i
Xc =_A+_a(x) (57)

and

1

i_o o_(x)_pCx = PCDo+A2+6V(2V+Go-2GI)+Go2-BGoGI+3Gz 2 - (58a)

i
cTi--_ (ao-_) (58b)

Pc = 20o (58c)
(7-i) 2

If heating is absent, equation (55) gives the familiar result that

the closed airfoil having a minimum drag for a fixed volume has a biconvex

section. The optimum section shape with heating depends, obviously, on

the nature of the heat addition, but even if G(x) is constant over a

given portion, the airfoil is, in general, _ combination of a double-wedge

and biconvex section.

In the interesting case when _ itself is chosen to minimize Cx

(under the supposition, which must be verified, that the resulting section

is real), there results

_= iGo+l-_- _.a_.

xZt = _- GO - a()i)dxl

xZc = _A + O(x:)ax I
o

(59)

(60)

(61)

where z = Zt(x) and z = Zc(X) are the equalions of the upper surface of

the thickness distribution and of the cambe] line, respectively. Obviously

a real airfoil exists if

1 X

X/ a(x)dx >/ G(_-)dx

o o

(62)
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for 0 _ x _ i. The equations for the drag, lift, and power become

1

i_o G2(x)dx + 1_Cx = _CDo + A2 - _ [ Go 2

1 (GO _ 2A)CL =

(63a)

(63b)

Pc =

2(3 o

(_-I)_o2
(63c)

and, further, the range efficiency factor becomes

_u_ (7-i)_o2
\-_-JCx:0- 2_

r

i + /2<lG2(x)dx-4_CDo

Z
-i (64)

External Heating Only

Let us study the case when Qv is a constant over the area

illustrated in sketch (_). Then settingS2-1 = M_

(_C _ _ Z_ _CDo I_x:O:T + ) (65)

An inspection of equation (65) yields the

principal message of linear theory with

regard to heating in a supersonic stream.

Notice that no matter how small r

becomes _v can be made large enough
(and tostay within the bounds of linear

theory, this means that the depth of the

region can be made long enough) so that

rQv is fixed. The term 2/r is then

dominant and the theory predicts indefi-

nitely large values of (LU_/P)Cx=O.

The physical reason for this is

quite apparent. Two-dimensional linear

theory predicts no attenuation of

&

--, -I

/co_t,_ hf
I

L
Sketch (Z)
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pressure along Machwaves. The efficiency of a unit heat source in
producing pressure on the bottom surface of the wing is, therefore, inde-
pendent of the source position so long as its upward going Machwave
strikes the wing. In the prediction of an optimum, then, the theory will
lead to the extreme condition of placing all the heat source on the Mach
line intersecting the point of maximumslope on the lower surface. Obvi-
ously this result is absurd from a practical standpoint, since the linear
model would no longer give a valid estimate of the physical flow from
several points of view. It gives, however, the trend of the first-order
terms in forming a criterion for optimum heating condition in supersonic
flow and provides a good starting point for the study of higher order
effects. A detailed study of a particular case is presented in a
subsequent section.

Let us look at equation (65) in a different light and find the value
of r which requires the minimumheat input for a given (LU_/P)Cx=O. It
is apparent from sketch (m) that these minima exist. Considering this r

/2

8

ILF.I-

4

\
\,

En velop •

0
/ 2 3 4 5

M.
1

x

Sketch (m)

to be optimum, we can construct the curves _;hown in sketch (n) where hZf

and XZr are the slopes of the front and r,_ar portions of the lower sur-

face, respectively. Under the assumption t]Lat Qv is a constant over

the region shown in sketch (Z), these curve:; give the lift and power
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% JoZo -Air
/

0

• | I |

1 2 3 4 5

M_

-F  czo
Sketch (n)

coefficients, the extent of heating, and the surface slopes for the

condition of minimum heating required to produce a given (LU_/P)Cx= 0
at a given Mach number.

Engine Combined With External Heating

If we seek to find the effect of combining engine thrust with the

lift and thrust provided by external heating, we can return to equa-

tions (54) in which Cx is not zero and the power coefficient is

increased by Cx/_ where

ThU_

=(_'_)engine
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is the engine alone efficiency parameter. Combining equation (55) with

(54a) and optimizing the volume, one can write

I

7 l_C x : _CDo+2 [2kc2-hcG(X)]dx + _ Go 2

O O

(67a)

1

_C L = -2 7 [2hc-G(x)]dx

o

(67b)

i

Pc _ (7-1)Mm22 _o G(x)dx + _N Cx (67c)

For simplicity; again assume _v is a constant over the area shown in

sketch (Z), and, further, that

_C =

-So , 0 < x < I - r
(68)

-_i , i - r < x < i

where so and _i are constants. Now optimizing

LUoo _ 4_o(1-r)+4_lr--2rQ v

P 2_rQ v ICx

for a fixed

gives

i _v2r(l_r)_C x = _CDo+4O_o2(l-r)+4_12r+2_v_zr -

LU°° = rQv+ Jr(2-r)Qv2+413((!x-CD°) (69)

P 2_r_ v _C.:
nt _--

(r_l) 2 n

When Cx, which now represents the thnst which must be provided by

the engine, is zero, this reduces to equati(,n (65). For zero external

heating it becomes

(70)
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which is a maximum for Cx = 2CDo; being_ in that case

If we seek the value of Cx which makes LU_/P in equation (69) a

maximum, there results for _ _ _o

(71)

where

2CD----_: - _2+5_ K_
+ - <T/°+ i

n =

P

_ {2+i0 +i - _

(72)

(73)

(74)

and (LU_/P)o has been defined in equation (71) as the maximum range

efficiency factor for zero external heat addition.

Sketch (o) illustrates the general

nature of the results. If

(5/_o)(LU_/P) o > i (for an aerodynamic

lift-drag ratio of 6 and an engine effi-

ciency of 0.3, (LUg/P) o = 1.8) a small

amount of external heating decreases

the range efficiency factor. However_

the efficiency can be increased if

enough heat is supplied so that

r(2-r) L<'- J\-_-]o

(75)

If (5/M_o)(LU_/P)o _ l, LU_/P can be
increased by even the smallest amount

of external heat addition.

_-P- /o

2 _0o M_

Sketch (o)
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Let us set

K (76)

and seek the value of r which requires the minimum external heat to

produce a given K. We find for (5K/Mm)(LUm/P) o > i

r

_-i + 5K (LU_ -i

_\PJo

77a)

m

Qv

=_ LU_
7_)

%0 K_ \TJo- _1_} 77c)

and for (SK/Mm)(LU_/P) o < 1

r = 1 (78a)

m

Qv

Cx 2

CD o K 2

J/('>o.)J \T)o

( 78b )

Typical results arising from the application of equations (77) and (78)

are shown in sketch (p). The results apply to the case in which the range

efficiency parameter is to be increased 40 I_ercent above its maximum value

obtainable with no external heating. Two possibilities are considered;

one, no engine, and the other, a combinatiol of engine and external heat.

In both cases r, the extent of heating_ is chosen to minimize Qv- For
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values of --_- --_-M_/(LU_/P) o below
about 3.46 the magnitude of Q-v

is lower if no engine at all is

used. Above 3.46 less external

heat is required if an engine is

used and the percent of total

power required of the engine is

shown in the lower part of the

sketch.

Application to a Particular

Example

8

4

In order to evaluate the

rather general results presented

in the preceding sections 3 let us

consider in some detail a partic-

ular example. Let us consider

the case of external heating only
and fix at the outset the follow-

ing parameters

_o=6 }
CDo = 0.0034

(LU_/P)Cx= 0 = 2.4

(79)

O

LO

.5

The value of CDo is not exces-
sively low when one considers the

reduction of the turbulent skin- O

friction coefficient with Mach

number. The value of (LU_/P)Cx=O

represents an equivalent conven-

tional airplane combination of

engine ThU_/P = 0.4 and aerody-

namic L/D = 6. These values are

what might be expected s at the

present time of ram-jet airplane performance at

Withou.t

-,_

wich / "" "_-

engine

I I ! !

• without _ _--

engine;Y1///

/ _ Froction

/ lot ,otol
/ /power required

_j, /,,,r o .g .o.
2 4 6 8

M=
e.._=..=.=, t

fL__ ul
_P /o

Sketch (p)

M%o = 6. Therefore, if

the values in equations (79) could be attained for a flying vehicle, they

would make this kind of heat addition warrant some consideration.

The values assumed in equations (79) when used in conjunction with

sketches (m) and (n) represent the following conditions

Slt is assumed that the boundary layer is for the most part turbulent.
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r =0.5

Zu=O

hZ = -3.1
f

h Z = 0.i
r

_v : (_--__-I _) hf = 0.40

(8o)

The lift and power coefficients are reasonable and the lower surface

slopes are less than 6 ° with reference to the free stream. The term

involving the heating is the really critical factor.

A principal assumption underlying the l[nearized theory is that

(_-i/a_o2)(_/_x) is small. For the value of Qv given above, this means

that hf must be of the order of a wing chord for the above figures to
be first-order estimates of the heating effect recorded in sketches (m)

and (n) under the conditions imposed by equations (79). The length of

the heated column is not so surprising if we remember that we are

attempting to drive an airplane with an unswept 5-percent-thick wing

through the air at a Mach number of 6 with a:l equivalent L/D of around

6 and we are attempting to do this by adding only a small amount of heat

along any given streamline. That such effic[encies are even theoretically

possible is due_ as has been pointed outj to the fact that the heat is

added to a two-dimensional supersonic stream so that pressure disturbances

along a characteristic line accumulate with little loss in intensity.

A very valid question remains as to whe;her the low heating rates

we have considered are optimum even if they _re practical. They were

considered first, not only because linear theory demanded it, but also

because small disturbance fields are, in conrentional aerodynamics, gen-

erally the most efficient. Quite possibly i; is preferable for the heat

to be intense enough to produce higher order disturbances; this point is

discussed briefly in the next section.

Some Remarks on Nonlinear Effects

Estimations.- Although linear theory ca_ be depended upon, for most

practical purposes, to give reliable values _or the disturbances near a

thin wing if these disturbances are very small relative to the free

stream, there is always the question as to i_s dependability when the
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disturbances are those produced by a vehicle actually intended to fly.

In problems as simple as the ones we have been studying, estimates of

what are probably the principal errors can be made for particular cases.

For example, let us examine more closely the true nature of the flow, the

linearized version of which is described by equations (79) and (80).

The discussion is divided into three parts; the area of heating, the

pressures caused by the wing shape, and the pressures caused by the heat

addition. Quite clearly the very fact that the nonlinear aspects of the

flow field are being considered means that these three points can not

really be considered independently; at this point, however, it seems

reasonable to expect that their independent effects deviate more from

linear theory than their interdependent effects. 4 This matter can really

only be settled by solving the exact equations for the given boundary
conditions.

Consider now the actual region of heat addition for the wing in our

example. Because we have applied our boundary conditions in the z = 0

plane (as is usual in linearized theory) the assumed region of heating is

that shown in the upper part of sketch (q). In a real flow, however, the

Linear - theory boundary conditions

Exact boundary conditions

Sketch (q)

width of the heated region required to influence the rear half of the

wing is reduced to that shown in the lower half of sketch (q). In our

example ra = 0.4r. Now according to linear theory, the value of the

pressure coefficient on the wing due to the heating is

2 7-i _5"J'J)

4Except, perhaps, for the possibility of separation in the heated region.
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and the power coefficient is

P = 2 7-i ____ hfr
ci_U_c (7_i)Moo2 _-_20x/

In other words, the pressures, that is, the lift and thrust, are unaffected

by shortening the region, but the power required to produce them is
decreased to 0.4 of the value based on the linearized boundary conditions.

The pressure coefficients on the botton_ of the double-wedge section

described in equation (80) flying at M = 6 in an unheated flow are, by

linear theory

Cp = 0.033, front half

Cp = -0.033, rear half

On the other hand, simple wave theory (i.e., Prandtl-Meyer expansion for

both compression and expansion) gives

Cp = 0.048, front half

Cp = -0.024, rear half

Notice that the drag is increased by the amount

ACo = I(_.ICpl)swt-(ZICpl)linc_arlT = 0.0003

(and this can be interpreted as reducing the CDo in equation (79) to

0.0031) and the lift is also increased by tile amount

l[ ]AC L : [ (ZCp)swt-(ZCp)lin_ar = 0.012

Finally, consider the pressure produce, L by the heat addition. The

error incurred by the use of linearized the()ry in this region is difficult

to evaluate since an exact solution for the particular example under con-

sideration is not available. A very rough _stimate of the error is made

in the following discussion.

First, if _ is assumed to be indepenlent 5 of _e, the pressure

coefficient can be written

5For this example, the effect of _ is, in any event, not large.
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c I
aco

or, on the wing, according to equations (79) and (80)

Ii_ CPlinear-O'Ol-_S'5 11_:ooo_ _.___

where Cplinea r is the value of the pressure coefficient given by

linearized theory and x is the distance into the heated region.

Sketch (r) shows the results. The two trends are clearly indicated: one,

zt x
hf

t

2.5

2.0

cp
1.5

CPHneor

1.0

.5

0 ,04 .08 .12

Cplineor

Sketch (r)
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at somepoint on the wing the actual pressur_ is greater than that given
by linear theory, and as the linearized valu_ increases (i.e., as the u
perturbation on the wing increases) this discrepancy increases; the other,
as the heated region is penetrated beyond such a point (or as its depth
is decreased) the actual pressure falls relative to its linear value.

In order to makeuse of sketch (r), we must estimate the value of u
along the surface of the wing. If we use linear theory for the heat
sources but take into account the fact that the "image plane" is tilted,
there results

Uheat Qv-hZr

So, using equation (80) one finds

(C r_ = 0.iPlinea
heat

It is impossible to tell what the nonlinear _ffects on this calculation
would be without a muchmore sophisticated aaalysis. It is almost certain
that the value 0.i is muchtoo low because the entire effect of the heat
and reflection is to compressthe air, and the linear theory is already
30 percent too low in an unheated flow when it predicts a value of 0.033
at M_ = 6. It seemsconservative, then to _stimate (Cplinear) at
0.13. heat

Onecan easily showthat the value of _ induced on the rear surface
by the wing alone yields the expression

(Cplinear)wing _ -0"03

Hence, by these approximations, Cplinear on the lower rear surface is
about 0.i, which, according to sketch (r), gives an average value for Cp
of about 0.14 there.

The following table summarizesthe abov9 crude corrections to linear
theory for the airfoil section and heating r_tes (hf = 0.5c) given in
equations (79) and (80):
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Pc CL

Linear theory 0.028 0.067

Plus correction for size

of heated region .0112 .067

Plus correction for actual
.0112 .079

wing pressure

Plus correction for actual
.0112 .094

heating pressure

LU_
CDo p

0.0034 2.4

.0034 6.0

.0031 7.0

.0047 8.4

Discussion.- According to the table the linear theory is extremely

conservative for the particular example studied. When the aforementioned

corrections are applied, not only is the allowable excess drag (CDo)
increased by 38 percent but the equivalent L/D (relative to a ram-jet

efficiency ThU_/P = 0.4) is increased to 21. The reliability of these

calculations has been repeatedly qualified. They clearly indicate, how-

ever, that this kind of heating, if it could be practically obtained, is

worthy of study, and really quantitative theoretical estimates must

include nonlinear effects.

As was mentioned at the end of the last section, the optimum heating

intensity is likely to produce disturbances well above those dealt with

by linear theory. The reason for this can be demonstrated as follows.

The effect of the heating is to increase the pressure of the air. In one

respect adding a given amount of heat to .6

the field corresponds as far as the pres-
sure field is concerned to the insertion

of a wedge-shaped airfoil in the flow.

It is well known that the pressure rise

per degree for a wedge is greater, the

greater the angle of stream deflection .4
(see sketch (s)). In the usual case of

aerodynamic design this means, in a gen- Gp
eral way, that surface slopes should be

reduced as much as possible to minimize

the drag. In the case of heat addition,

however, the opposite is true. Of .2

course, no net force acts on a heat

source whose only use is to provide as

high a pressure as possible. Therefore,
inasmuch as a heat source is like a

fluid source the heat rate should not be

of a low intensity.

Unfortunately the effect shown in

sketch (s) is not the only nonlinear

effect caused by increasing the heat

Exoct_//

L in eor_

| J

0 4 8

_, degrees

Sketch (s)
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rate. Another important effect is to increase the local speed of sound

which, in turn, decreases the pressure. An _stimate of this result has

been presented in sketch (r) and is illustrated by the reduction in Cp

for a fixed Cplinea r when x/hf goes from C to i. Some optimum relation

between wing-surface and heating-region geometry and heating intensity is

indicated and it appears probable that the intensity required will be of

a magnitude to produce higher order disturbances in the flow.

Ames Research Center

National Aeronautics and Space Administration

Moffett Field, Calif., Oct. i0, 1958
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Figure i.- Pressures on lower surface of 5-percent-thick biconvex wing

with and without heat addition; Tf/T i = 1.243, _ = 2° , hf/c = 0.07.
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